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r Fundación Huésped, Ciudad Autónoma de Buenos Aires (1202), Argentina
s FP Clinical Pharma S.R.L. Ciudad Autónoma de Buenos Aires (1425), Argentina
t VisMederi Srl, Siena, Italy
u Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy

* Corresponding authors at: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones 
Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.

E-mail addresses: kpasquevich@iib.unsam.edu.ar (K.A. Pasquevich), jucassataro@iib.unsam.edu.ar (J. Cassataro). 
1 These authors contributed equally.
2 These authors contributed equally.

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

https://doi.org/10.1016/j.vaccine.2025.127045

Vaccine 54 (2025) 127045 

Available online 3 April 2025 
0264-410X/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:kpasquevich@iib.unsam.edu.ar
mailto:jucassataro@iib.unsam.edu.ar
www.sciencedirect.com/science/journal/0264410X
https://www.elsevier.com/locate/vaccine
https://doi.org/10.1016/j.vaccine.2025.127045
https://doi.org/10.1016/j.vaccine.2025.127045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2025.127045&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A R T I C L E  I N F O

Keywords:
Booster
Receptor binding domain
Recombinant protein vaccine
SARS-CoV-2
Variant-adapted vaccine, pan-sarbecovirus 
vaccine

A B S T R A C T

A randomized, placebo-controlled, crossover, double-blind, phase II/III study was conducted to evaluate the 
immunogenicity, safety, and tolerability of a recombinant booster vaccine (ARVAC) containing the SARS-CoV-2 
spike protein receptor binding domain in three versions: ARVACGamma, ARVACOmicron, and ARVACBivalent in 
adults with ≤3 previous SARS-CoV-2 booster doses. Primary endpoint was seroconversion rate of neutralizing 
antibodies compared to placebo and to a > 75 % seroconversion rate to vaccine antigen homologous variants. All 
vaccine versions significantly increased seroconversion rates to SARS-CoV-2 variants compared to placebo. In 
participants aged 18–60 years, all versions met the primary endpoint; in those over 60 years old, ARVACOmicron 
and ARVACBivalent met this endpoint. No vaccine-related serious adverse events were recorded, and most adverse 
events were mild. Plasma levels of anti-spike-specific IgG and anti-S1-specific IgA in saliva increased in partic-
ipants receiving any vaccine. The increase in plasma neutralizing antibodies induced by the vaccine was inde-
pendent of the number of previous booster doses (0, 1 or 2), the primary vaccine platform (adenovirus, single- 
dose adenovirus, mRNA, inactivated virus, heterologous vaccination, and virus-like particle [VLP]) and the 
history of previous COVID-19. The neutralizing Ab response induced by the vaccine in healthy participants was 
similar to that triggered in participants with underlying medical conditions associated with an increased risk of 
severe COVID-19. ARVACBivalent induced high seroconversion rates (>90 %) against multiple variants and was 
superior to other ARVAC-versions. It increased neutralizing antibodies against SARS-CoV-2 variants (Ancestral, 
Gamma, Omicron, XBB and JN.1) and SARS-CoV-1. (NCT05752201).

1. Background

Coronavirus disease 2019 (COVID-19) continues to be a global 
health threat [1,2]. Public health measures and vaccination contributed 
to decreasing SARS-CoV-2 virus circulation, disease severity, and asso-
ciated mortality [3]. However, vaccine-induced immunity progressively 
wanes [4,5] and new, highly contagious SARS-CoV-2 variants that 
escape from vaccine-induced immunity continue to emerge [5,6]. In this 
scenario, primary vaccination schemes and boosters based on the 
ancestral SARS-CoV-2 variants fail to provide sufficient long-term pro-
tection [4,7].

To ensure long-term immune memory, the World Health Organiza-
tion (WHO) recommends homologous and heterologous booster doses 
with variant-adapted formulations for protection against severe COVID- 
19 disease and death [8]. Of the most common COVID-19 vaccine 
platforms, including inactivated viruses, viral vectors, mRNA, and re-
combinant protein subunits, mRNA vaccines are the most widely used. 
However, they are unstable and require storage at freezing temperatures 
(− 20 ◦C or − 80 ◦C), limiting their distribution, particularly in low- and 
middle-income countries [5,9]. Conversely, recombinant subunit vac-
cines may be stored in coolers, simplifying the storage and distribution 
logistics. Recombinant protein large-scale production is available in 
several countries, enabling local manufacturing and widespread distri-
bution with lower production costs [10]. Despite their slower develop-
ment speed, recombinant subunit vaccines can be modified to induce 
immunity against novel SARS-CoV-2 variants [11]. Moreover, their 
safety profile record has been well known for over 30 years, enabling 
their use in children, elderly, and pregnant women [12].

Argentina has developed and manufactured a recombinant protein 
subunit vaccine, ARVAC, which has been approved [13] and is now 
available for administration in pharmacies and vaccination centers in 
Argentina. The first version of the vaccine contains the receptor binding 
domain (RBD) of the spike protein of the SARS-CoV-2 Gamma variant, 
with K417T, E484K, and N501Y mutations. Preclinical studies demon-
strated that the Gamma RBD version is more immunogenic than the 
ancestral RBD at inducing broader neutralizing antibodies (nAbs) even 
against distant variants, such as Omicron BA.5 [14]. In a Phase I trial, 
the vaccine was safe and elicited a robust and broad nAb response 
against several SARS-CoV-2 variants [15].

In this work, we present the results of a randomized, placebo- 
controlled Phase II/III trial assessing the immunogenicity, safety, and 
tolerability of the Gamma, Omicron BA.4/5, and bivalent versions of 
ARVAC used as boosters in adult volunteers previously immunized with 

different SARS-CoV-2 vaccine platforms.

2. Methods

2.1. Study design, participants, and oversight

The ARVAC-F2–3-002 study is a multicenter, randomized, double- 
blind, crossover, placebo-controlled Phase II/III trial evaluating the 
immunogenicity, safety, and tolerability of a recombinant protein vac-
cine against SARS-CoV-2 in adult (≥18 years) volunteers previously 
vaccinated against SARS-CoV-2 with ≤3 booster doses. Inclusion and 
exclusion criteria are provided in the Supplementary Data. Investigators 
from 11 participating centers in Argentina (Supplementary Data) 
consecutively recruited volunteers.

The Centro de Educación Médica e Investigaciones Clínicas – CEMIC 
(Argentina) was the sponsor. An external, independent data safety 
monitoring board reviewed safety data. The trial adhered to the Inter-
national Council for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use Guideline for Good Clinical Practice 
and the local data protection law 25,326. All participants signed the 
informed consent form. The Administración Nacional de Medicamentos, 
Alimentación y Tecnología Médica (ANMAT), the local ethics committee 
of the Autonomous City of Buenos Aires (PRIISA, Plataforma de Registro 
Informatizado de Investigaciones en Salud de Buenos Aires), and the ethics 
committee of the Centro de Estudios Infectológicos (CEI) - Stamboulian 
approved the protocol, which was registered at ANMAT, PRIISA, and 
clinicaltrials.gov (NCT05752201). The local ethics committees that 
approved the study protocol are listed in the Supplementary Data. 
Informed consent was obtained after the nature and possible conse-
quences of the study had been fully explained to the subjects.

2.2. Recombinant protein vaccines

The ARVAC vaccine is a liquid suspension containing 50 μg of re-
combinant protein adjuvanted with 0.5 mg aluminum hydroxide gel 
(alhydrogel). The vaccine antigen encompasses aminoacids 319R-537 K 
in the RBD of the SARS-CoV-2 spike protein. Recombinant proteins were 
produced in CHO-S cells [15].

2.3. Randomization and procedures

Participants were recruited in two stages. In stage 1 (Phase II), par-
ticipants were randomized into two subgroups at a 1:1 ratio to receive 
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Gamma-based vaccine (ARVACGamma) (50 μg) + placebo (group A) and 
placebo + ARVACGamma (50 μg) (group B) 28 days apart. In stage 2 
(Phase III), participants were randomized into three groups to receive 
the ARVACGamma (50 μg), the Omicron BA.4/5-based (ARVACOmicron) 
(50 μg), and the Bivalent (Gamma/Omicron BA.4/5 25 μg/25 μg, 
ARVACBivalent) vaccine, with two subgroups each receiving vaccine +
placebo (group A) or placebo + vaccine (group B) 28 days apart 
(1,1,1,1,1:1 ratio) (Fig. S1). Within each group, individuals were 
assigned to age subgroups (18–60 years and > 60 years) and immuno-
genicity subsets (Supplementary Data).

Assessments were performed during five visits (V): V1 on day 1 
(inclusion visit); V2, 14 ± 2 days later; V3, 28 ± 2 days after V1; V4, 56 
± 2 days after V1; and V5, 90 ± 2 days after V1. In all groups, the first 
treatment was administered on V1 and the second on V3. Volunteers had 
to be negative for SARS-CoV-2 in a polymerase chain reaction or antigen 
test at study inclusion and before any treatment.

2.4. Immunogenicity endpoints and variables

NAbs against different SARS-CoV-2 variants were measured on 
plasma samples obtained before (day 1, d1) and after (day 14, d14 and 
day 90, d90) the first treatment, using a SARS-CoV-2 live virus assay in 
VERO E6 cells (ATCC) as was described in [15]. Results are presented as 
geometric mean titers (GMTs); geometric mean fold rises (GMFR) and 
GMT ratios (GMTR). Additionally, titers against the SARS-CoV-2 
Ancestral (Wuhan) variant were transformed to IU/mL using a second-
ary standard calibrated with a WHO international standard [16]. Based 
on previous studies, a > 1030 UI/mL threshold of nAbs was associated 
with a 90 % efficacy against symptomatic infection [17].

The primary endpoint was the seroconversion rate at d14 after 
receiving the vaccine compared to placebo. The vaccine immunoge-
nicity was considered acceptable at seroconversion rates >75 % to 
variants homologous to the antigen contained in the vaccine (pre-
specified primary endpoint). The threshold for seroconversion was 
defined as a 4-fold or a 2-fold increase in nAb titers for individuals with 
“low” or “high” baseline nAb levels against Ancestral SARS-CoV-2 
(<949 or ≥ 949 IU/mL), respectively.

Additional secondary and exploratory endpoints and methods are 
described in the Supplementary Data.

2.5. Safety endpoints and assessments

Safety endpoints were solicited local and systemic adverse events 
(AEs), registered daily in the participants’ diary within seven days after 
each dose, and unsolicited local AEs occurring within 20 min after 
administration. Based on published guidelines, AEs were classified ac-
cording to severity and their relationship to the study medication [18]. 
Additional details are provided in the Supplementary Data.

2.6. Statistical analysis

The sample size was calculated based on the previously obtained 
ARVACGamma vaccine seroconversion rates [15]. For the prespecified 
primary endpoint, the estimated sample size was 113 participants for 
each vaccine candidate, considering a 10 % dropout rate. For the 
exploratory endpoint of seroconversion superiority of bivalent vs. the 
monovalent vaccines, a sample size of 248 participants for each vaccine 
candidate was estimated (276, considering a 10 % dropout rate). For the 
safety endpoints, 2014 participants, 232 in Phase II and 1782 in Phase 
III, were estimated to detect AEs with a 0.1 % prevalence, considering a 
20 % dropout rate. The Supplementary Data includes a detailed 
description of the sample size calculation.

Statistical methods are included in the Supplementary Data.

3. Results

3.1. Participants

Of 2126 participants who signed the informed consent, 2012 were 
included (232 in Phase II and 1780 in Phase III) and randomized. All 
were administered the first treatment (vaccine or placebo) and 1905, the 
second; 138 discontinued the study and 1874 finished the study protocol 
(Fig. 1).

Among the 2012 enrolled participants, the median age was 49 years 
(IQR: 34–63), with 48.1 % being women and 44.2 % having a prior 
COVID-19 diagnosis. The median age in Phase II was 34 years (IQR: 
27–45.8), whereas the median age in Phase III was 51 years (IQR: 
36–64), reflecting an older cohort in the latter phase (Table 1).

The baseline characteristics of the 2012 enrolled participants 
demonstrate the broad inclusion criteria, resulting in a highly diverse 
population. This diversity extended to vaccination history, including 
variation in vaccine platforms, number of boosters received, and time 
since the last dose. While all participants had completed a SARS-CoV-2 
primary vaccination scheme, some had not received any previous 
additional booster (14,5 %), or had received one (60.1 %), two (13.3 %) 
or three additional booster doses (12.1 %) prior to their inclusion in the 
study. The median time since the last vaccine dose was 15 months (IQR: 
12–17) (Table 1).

Phase III participants also exhibited considerable diversity in their 
underlying medical conditions, since the inclusion criteria (see supple-
mentary material) allowed healthy volunteers or volunteers with stable 
and controlled chronic comorbidities not associated with a reduced 
immune response according to the investigators’ criteria. In total, 44.8 
% of participants reported at least one chronic comorbidity or medical 
condition linked to an increased risk of severe COVID-19, as defined by 
the CDC [19]. These included asthma (2.73 %), chronic lung diseases 
(1.94 %), diabetes (8.60 %), heart conditions (2.49 %), HIV (1.84 %), 
mental health conditions (4.62 %), obesity (BMI >30; 23.7 %), smoking 
(0.75 %), and hypertension (18.4 %), among others (Table S1).

The immunogenicity subset included all volunteers from Phase II and 
1053 participants from Phase III (Fig. 1). Demographic characteristics of 
Phase III immunogenicity subset are described in Table S2. The median 
age of this subset was 52 years with 46.2 % being women. Participants 
were divided into two age groups: 18–60 years (n = 628) and > 60 years 
(n = 425). Most participants (71.6 %) had received one booster dose, 
while 15.4 % had received two boosters, and 13.0 % had not received a 
booster. Among participants aged 18–60, 82.5 % had received one 
booster, while in the >60 group, this proportion was lower (55.5 %), 
with a higher percentage receiving two boosters (37.4 %). The primary 
vaccine platforms included: two dose adenovirus-based primary 
schemes (54.9 %), adenoviral single-dose vaccines (4.0 %), mRNA 
vaccines (3.7 %), inactivated (20.8 %) vaccines, heterologous platforms 
(16.2 %, mixing Adenoviral, inactivated, mRNA), and recombinant 
protein vaccines (0.4 %, Virus like particles, VLP). The median time 
since the last vaccine administration was approximately 504 days (16.8 
months).

3.2. Seroconversion rates (primary endpoint)

Seroconversion rates to homologous and non-homologous SARS- 
CoV-2 variants were higher after receiving any vaccine than placebo 
overall and in the two age groups (Table 2). All vaccine versions met the 
prespecified primary endpoint (i.e., seroconversion rate > 75 % for the 
homologous variant) in all participants and those aged 18–60 years. In 
participants >60 years, ARVACOmicron and ARVACBivalent met the pre-
specified primary endpoint, whereas ARVACGamma did not. ARVACBiva-

lent-induced seroconversion rates were > 90 % against Ancestral 
(Wuhan), Gamma, and Omicron BA.5 SARS-CoV-2 variants in all age 
groups (Table 2). Analyses using normalized antibody titers (Table S3) 
or excluding anti-nucleoprotein IgG seroconverted participants yielded 
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similar results (Table S4).

3.3. NAb Titers

GMTs to Ancestral, Gamma, and Omicron variants increased (d1- 
d14) in participants receiving any vaccine, but not in those receiving 
placebo (Fig. 2). At day 90 (d90), GMFR remained statistically signifi-
cant across vaccine versions, SARS-CoV-2 variants, and age groups (Fig. 
S2).

The percentage of participants with nAbs to the Ancestral variant 
>1030 UI/mL increased at d14 for all vaccine versions, with similar 
results in the two age groups. For ARVACGamma, ARVACOmicron, and 
ARVACBivalent vaccines, percentages increased from 30.8 %, 31.2 %, and 
24.8 % to 87.2 %, 85.4 %, and 87.9 %, respectively, in participants aged 
18–60 years; and from 40.4 %, 47.2 %, and 45.1 % to 84.4 %, 89.8 %, 
and 92.2 %, respectively, in participants >60 years (Fig. S3).

3.4. Analyses according to previous vaccination and COVID-19 infection

The nAb response was evaluated in study participants categorized by 
the number of previous booster doses (0, 1 or 2), by the primary vaccine 
platform (adenovirus, single-dose adenovirus, mRNA, inactivated virus, 
heterologous vaccination, and virus-like particle [VLP]) in their schemes 
or by their previous history of COVID-19. GMTs to all SARS-CoV-2 
variants increased in participants receiving the ARVAC vaccine 
regardless of previous booster doses (Fig. S4) or primary vaccine plat-
forms (Figs. S5-S8). GMTs and GMFRs were similar regardless of pre-
vious COVID-19 infection (Fig. S9).

3.5. Analyses according to the study participants baseline underlying 
medical conditions or chronic comorbidities

GMTs to all SARS-CoV-2 variants increased in participants with un-
derlying medical conditions after receiving any ARVAC vaccine (Fig. 
S10). The response in healthy participants was similar to that observed 

in participants with underlying medical conditions associated with an 
increased risk of severe COVID-19 (higher risk, listed in Table S1) (Fig. 
S11). GMTs to all SARS-CoV-2 variants increased overall in subgroups of 
participants with any of the following conditions: hypertension, dia-
betes, asthma, HIV, obesity, heart conditions, or mental health condi-
tions. Although the number of participants with chronic lung diseases in 
the three vaccine groups and those with HIV in the ARVAC Gamma and 
ARVAC Omicron cohorts was small (n = 2–5), an increase in nAb titers 
was still observed in these individuals (Fig. S11).

3.6. Seroconversion rates and nAb titers according to vaccine versions

ARVACBivalent was non-inferior to ARVACOmicron and ARVACGamma in 
seroconversion rates against all three SARS-CoV-2 variants (Table S5). 
ARVACBivalent seroconversion rates were superior to ARVACGamma’s 
against the Omicron variant and to ARVACOmicron’s against the Ancestral 
and Gamma variants. In participants aged 18–60 years, ARVACBivalent 
seroconversion rates were superior to ARVACOmicron’s against the 
Ancestral variant. In participants >60 years, ARVACBivalent seroconver-
sion rates were superior to ARVACGamma’ s against the Omicron variant 
and to ARVACOmicron’s against the Ancestral and Gamma variants (Table 
S6).

An adjusted multivariate analysis confirmed the superiority of 
ARVACBivalent to ARVACGamma in seroconversion rates against all vari-
ants, and to ARVACOmicron against the Ancestral and Gamma variants 
(Tables S7-S9).

Regarding GMTs of neutralizing antibodies, ARVACBivalent was non- 
inferior to the monovalent versions regardless of age (Table S10). 
While all vaccine versions induced similar GMTs to the Ancestral and 
Gamma variants, ARVACBivalent and ARVACOmicron induced higher titers 
against the Omicron compared to ARVACGamma, both in the overall 
population and in participants >60 years, (Tables S11-S13).

ARVACBivalent induced higher GMFRs than ARVACOmicron for the 
Ancestral and Gamma variants and higher GMFRs than ARVACGamma for 
the Omicron variant (Table S14).

Fig. 1. Flow chart of study participants.
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Table 1 
Characteristics of study participants according to study phase and sex (n = 2012).

Phase II Phase III All

Female Male Total Female Male Total Female Male Total

n (%) 134 (57.8) 98 (42.2) 232 834 (46.9) 946 (53.1) 1780 968 (48.1) 1044 (51.9) 2012 (100)
Age (years), median (IQR) 34 (27, 46) 35 (25.8, 45) 34 (27, 45.8) 48 (33, 62) 55 (40, 65) 51 (36, 64) 46 (31, 61) 51 (37, 64) 49 (34, 63)

BMI (kg/m2), median (IQR)
26.7 (23.3, 
31.2)

26.7 (24.2, 
29.4)

26.7 (23.4, 
30.8)

26.5 (23, 
30.4)

27.4 (24.3, 
30.4)

27 (23.8, 
30.4)

26.5 (23, 
30.7)

27.3 (24.3, 
30.3)

27 (23.7, 
30.5)

Number of boosters after completing primary vaccination scheme, 
n (%)

0 46 (34.3) 40 (40.8) 86 (37.1) 93 (11.2) 113 (19.9) 206 (11.6) 139 (14.4) 153 (14.7) 293 (14.5)
1 88 (65.7) 58 (59.2) 146 (62.9) 538 (64.5) 526 (55.6) 1064 (59.8) 626 (64.7) 584 (55.9) 1210 (60.1)
2 101 (12.1) 166 (17.5) 267 (15.0) 101 (10.4) 166 (15.9) 267 (13.3)
3 102 (12.2) 141 (14.9) 243 (13.6) 102 (10.5) 141 (13.5) 243 (12.1)
Time since last vaccination (months), median (IQR) 13 (12, 14.3) 13 (11, 15.3) 13 (12, 15) 15 (12, 17) 15 (12, 17) 15 (12, 17) 15 (12, 17) 15 (12, 17) 15 (12, 17)
Previous COVID-19, n (%)
No 87 (64.9) 73 (74.5) 160 (69.0) 406 (48.7) 557 (58.9) 963 (54.1) 493 (50.9) 630 (60.3) 1123 (55.8)
Yes 47 (35.1) 25 (25.5) 72 (31.0) 428 (51.3) 389 (41.1) 817 (45.9) 475 (49.1) 414 (39.7) 889 (44.2)
Time since infection (months), median (IQR) 19 (14, 27) 20 (12, 30.5) 19 (14, 27.8) 18 (14, 27) 18 (15, 28) 18 (15, 27) 18 (14, 27) 19 (15, 28) 18 (14, 27)
Participants with underlying medical conditions*, n (%) 384 (46.0) 517 (54.7) 901 (50.6) 384 (39.7) 517 (49.5) 901 (44.8)
One condition 246 (29.5) 301 (31.8) 547 (30.7) 246 (25.4) 301 (28.8) 547 (27.2)
Two conditions 93 (11.2) 146 (15.4) 239 (13.4) 93 (9.6) 146 (14.0) 239 (11.9)
Three or more conditions 45 (5.4) 70 (7.4) 115 (6.5) 45 (4.6) 70 (6.7) 115 (5.7)
Study treatment, n (%)
Bivalent 139 (16.7) 158 (16.7) 297 (16.7) 139 (14.3) 158 (15.1) 297 (14.8)
Gamma 70 (52.2) 46 (46.9) 116 (50.0) 136 (16.3) 161 (17.1) 297 (16.7) 206 (21.3) 207 (19.9) 413 (20.5)
Omicron 144 (17.2) 153 (16.2) 297 (16.7) 144 (14.9) 153 (14.6) 297 (14.8)
Placebo 64 (47.8) 52 (53.1) 116 (50.0) 415 (49.8) 474 (50.1) 889 (49.9) 479 (49.5) 526 (50.4) 1005 (50.0)

IQR, interquartile range; BMI, body mass index.
* A list of baseline underlying medical conditions or comorbidities in study participants with the number and frequency of participants with each underlying condition is presented in Table S1.
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ARVACBivalent was superior to ARVACGamma in nAb responses (i.e., 
GMTR) against the Gamma and Omicron variants. ARVACBivalent was 
superior to ARVACOmicron in nAb responses against the Ancestral and 
Gamma variants (Table S15).

3.7. Anti-spike-specific antibodies and mucosal response

Plasma levels of anti-spike-specific IgG increased (d1 to d14) in 
participants receiving any vaccine, regardless of age group (Fig. S12); 
changes remained significant at d90 (Fig. S13). Anti-S1-specific IgA in 
saliva increased in participants receiving any vaccine (Fig. S14).

3.8. NAbs against new emerging virus variants and SARS-CoV-1

GMTs to the XBB.1.18 and JN.1 subvariants increased significantly in 
participants aged 18–60 years and in those >60 years after ARVACBi-

valent administration (Fig. S15). While most participants (>89 %) had 
detectable nAb titers against the Ancestral, Gamma, and Omicron BA.5 
variants before vaccination, nAbs to XBB.1.18 and JN.1 were detectable 
in 50.0 % and 18.8 % of participants aged 18–60 and in 61.5 % and 33.0 
% of those >60 years, respectively. These percentages increased to 91.7 
% and 83.3 % in participants aged 18–60 and to 100 % and 92.3 % in 
participants >60 years after ARVACBivalent administration (Fig. S15). In 
addition, GMTs to the SARS-CoV-1 virus increased significantly in par-
ticipants >60 years after ARVACBivalent administration (Fig. S16).

Table 2 
Seroconversion rates in Phase II (n = 228) and Phase III (n = 1053) participants for the different vaccine variants and age groups compared to placebo and a > 75 % 
reference.

Study phase and treatment SARS-CoV-2 Seroconversion rate (%) 95 % CI p-valuea

Vaccine vs. placebo
p-valueb

Vaccine vs. >75 %

Phase II, n = 228

Placebo, n = 114

Ancestral 9.6 5.5, 16.5 NA NA
Gamma 18.4 12.4, 26.5 NA NA
Omicron BA.5 10.5 6.1, 17.5 NA NA

ARVAC Gamma, n = 114

Ancestral 87.7 80.4, 92.5 <0.0001 0.0004
Gamma 90.4 83.5, 94.5 <0.0001 <0.0001
Omicron BA.5 84.2 76.4, 89.8 <0.0001 0.0017

Phase III all participants, n = 1053

Placebo, n = 264

Ancestral 12.5 9.0, 17.0 NA NA
Gamma 12.1 8.7, 16.6 NA NA
Omicron BA.5 15.2 11.3, 20.0 NA NA

ARVAC Gamma, n = 265

Ancestral 86.8 82.2, 90.3 <0.0001 <0.0001
Gamma 84.2 79.3, 88.1 <0.0001 0.0006
Omicron BA.5 81.9 76.8, 86.1 <0.0001 0.0105

ARVAC Omicron BA.5, n = 265

Ancestral 80.0 74.8, 84.4 <0.0001 0.0694
Gamma 82.3 77.2, 86.4 <0.0001 0.0031
Omicron BA.5 87.5 83.0, 91.0 <0.0001 <0.0001

ARVAC Bivalent, n = 259

Ancestral 92.7 88.8, 95.3 <0.0001 <0.0001
Gamma 91.1 87.0, 94.0 <0.0001 <0.0001
Omicron BA.5 92.7 88.8, 95.3 <0.0001 <0.0001

Phase III, participants aged 18–60 years

Placebo, n = 158

Ancestral 7.6 4.4, 12.8 NA NA
Gamma 9.5 5.8, 15.1 NA NA
Omicron BA.5 13.3 8.9, 19.5 NA NA

ARVAC Gamma, n = 156
Ancestral 89.1 83.2, 93.1 <0.0001 <0.0001
Gamma 89.1 83.2, 93.1 <0.0001 <0.0001
Omicron BA.5 86.5 80.3, 91.0 <0.0001 0.0009

ARVAC Omicron BA.4/5, n = 157

Ancestral 81.5 74.7, 86.8 <0.0001 0.0589
Gamma 87.3 81.1, 91.6 <0.0001 0.0004
Omicron BA.5 87.3 81.1, 91.6 <0.0001 0.0004

ARVAC Bivalent, n = 157

Ancestral 93.6 88.7, 96.5 <0.0001 <0.0001
Gamma 91.7 86.3, 95.1 <0.0001 <0.0001
Omicron BA.5 93.0 87.9, 96.0 <0.0001 <0.0001

Phase III, participants > 60 years

Placebo, n = 106

Ancestral 19.8 13.3, 28.4 NA NA
Gamma 16.0 10.3, 24.2 NA NA
Omicron BA.5 17.9 11.8, 26.3 NA NA

ARVAC Gamma, n = 109

Ancestral 83.5 75.4, 89.3 <0.0001 0.0407
Gamma 77.1 68.3, 84.0 <0.0001 0.6187
Omicron BA.5 75.2 66.4, 82.4 <0.0001 0.9559

ARVAC Omicron BA.4/5, n = 108

Ancestral 77.8 69.1, 84.6 <0.0001 0.5050
Gamma 75.0 66.1, 82.2 <0.0001 >0.9999
Omicron BA.5 88.0 80.5, 92.8 <0.0001 0.0019

ARVAC Bivalent, n = 102

Ancestral 91.2 84.1, 95.3 <0.0001 0.0002
Gamma 90.2 82.9, 94.6 <0.0001 0.0004
Omicron BA.5 92.2 85.3, 96.0 <0.0001 <0.0001

CI, confidence interval; NA, not applicable.
a Chi-square test for Phase II and Fisher’s exact test for Phase III.
b Z-test.
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3.9. Safety

Most local and systemic AEs were Grade 1 and 2 (Table 3), and no 
SAEs related to the vaccine were reported. The most frequent local AEs 
were pain and sensitivity/discomfort in the injection site and were more 
frequent in participants receiving the vaccine than placebo (Table 3). 
Pain was more frequent after administration of ARVACOmicron and 
ARVACBivalent (Table S16).

The most frequent systemic AEs were headache and fatigue/tired-
ness/weakening (Table 3). A description of AEs per vaccine version is 
included in Table S17.

4. Discussion

This Phase II/III trial showed that booster vaccination with Gamma, 
Omicron BA.4/5, and Bivalent versions of a recombinant protein subunit 
vaccine elicited robust antibody responses to SARS-CoV-2 Ancestral, 
Gamma, and Omicron BA.5 variants in adults, regardless of primary 
vaccination platform and previous SARS-CoV-2 infection. At d14 post- 
vaccination, seroconversion rates to homologous and non-homologous 
SARS-CoV-2 variants were higher than placebo, with a favorable 
safety and tolerability profile. NAb GMTs against the three SARS-CoV-2 
variants were significantly increased, and antibody responses persisted 
for at least 90 days, even in participants >60 years. NAb levels suggested 
that the vaccine versions achieved an estimated efficacy of ≥90 % 
against symptomatic infection in 84.4 %–92.2 % of participants. Addi-
tionally, all vaccine versions increased anti-spike-specific IgG antibodies 
in plasma and IgA in saliva.

Results from this trial are consistent with a previous Phase I study, 
which included younger participants (18–55 years) with various pri-
mary vaccination schemes [15]. Moreover, they align with previous 
research indicating that a Gamma-variant vaccine may enhance immu-
nogenicity and breadth compared to an ancestral-variant vaccine 
[14,15].

To our knowledge, few trials have simultaneously assessed and 
compared the immunogenicity of several vaccine variant versions, as in 
this Phase III trial [20,21]. Bivalent Ancestral/Omicron, Alpha/Beta, 
and Ancestral/Beta recombinant boosters have shown robust nAb re-
sponses in individuals [20–23], but a bivalent recombinant booster 
vaccine lacking the Ancestral/Alpha variants remained unassessed. 
Despite including a lower dose of each monovalent antigen, the 
ARVACBivalent booster was non-inferior regarding seroconversion rates 
and GMTs, and, remarkably, it was superior to monovalent vaccines 
against heterologous SARS-CoV-2 variants. Furthermore, ARVACBivalent- 
induced seroconversion rates were > 90 % against Ancestral, Gamma 
and Omicron SARS-CoV-2 in all age groups. Similar results, superiority 
to monovalent versions against heterologous variants and non- 
inferiority against homologous variants, were described for a bivalent 
Omicron/Ancestral recombinant spike protein vaccine as a heterologous 
booster dose [21,23].

Unlike most trials on COVID-19 boosters, in which enrolled partici-
pants were highly homogeneous regarding their primary vaccination 
scheme, (mostly based on mRNA or adenoviral vaccines [20–24]), this 
study reflects the diverse primary vaccination schemes used in 
Argentina and Latinoamerica, where at least seven different vaccines 
based on different platforms were applied as primary and booster doses 
[25]. This trial showed robust nAb responses regardless of the previous 
vaccination scheme and the number of previous booster doses (no 
booster, one, or two). Additionally, the trial included a large population 
with no strict selection criteria, providing valuable information for 
applying the ARVAC vaccine in real-world populations. In this regard, 
an adjusted multivariate analysis revealed the superiority of ARVACBi-

valent compared to ARVACGamma or ARVACOmicron regardless of age, sex, 
previous vaccine doses and platform, time since last vaccination, and 
previous COVID-19 history. Moreover, these results contribute to the 
increasing evidence that heterologous schedules may provide superior 

immunogenicity to homologous booster schedules [26–28]. Further-
more, the WHO includes older adults as well as younger adults with 
significant comorbidities (e.g. diabetes, heart disease, HIV) as high 
priority [8]. Hence, the strong immune response observed in partici-
pants over 60 years and in participants with underlying medical con-
ditions, provide data from relevant populations.

In this study, both a booster dose with a protein bivalent vaccine 
-combining Gamma and Omicron antigens- or a monovalent Omicron 
vaccine elicited comparable high levels of neutralizing antibody and 
seroconversion rates against Omicron. Yet the bivalent formulation 
demonstrated ≥90 % seroconversion rate and a broad response. Similar 
results were obtained with other COVID-19 vaccines such as bivalent 
(omicronBA.5/ancestral) mRNA-1273.222 [29]) or protein based (NVX- 
CoV2373/NVX-CoV2540 [21]). Conversely, some studies indicated that 
bivalent (Ancestral/Omicron) mRNA vaccines elicit weaker immunity 
against Omicron than the ancestral strain, with concerns that the 
ancestral antigen may cause immunological imprinting, limiting the 
response to newer variants [30–34]. In contrast, the RBD-based bivalent 
protein subunit vaccine (Gamma/ Omicron) evaluated in this work 
generated strong immunity against its target antigens and the ancestral 
strain, potentially due to differences in antigen expression and formu-
lation. The use of the Gamma RBD antigen, rather than the ancestral 
strain and targeting the RBD instead of the full spike protein may 
mitigate imprinting issues [35]. However other variations in the study 
population may also contribute to the above-mentioned differences.

The Omicron BA.4/5 and Gamma antigens in the Bivalent vaccine 
contain key mutations associated with immune evasion and are, there-
fore, likely to elicit the production of antibodies neutralizing other 
Omicron subvariants. The vaccine’s immunogenicity against the Omi-
cron XBB.1.18 and JN.1 subvariants is relevant, as these variants contain 
more immune-evasive mutations than most others detected to date and 
are predominant in many geographical centers. Notwithstanding this, 
future adaptations of the vaccine may further enhance immunogenicity 
against emerging strains. The induced broad nAb response against 
multiple and phylogenetically distant variants. Including Ancestral, 
Gamma, Omicron, XBB, JN.1 SARS-CoV-2 and SARS-CoV-1, highlights 
the potential of the ARVAC platform as initial point to develop a protein 
subunit pan-sarbecovirus vaccine accessible in the Global South.

This vaccine demonstrated a favorable safety profile with low reac-
togenicity, as expected for a protein-based recombinant platform. 
Notably, the rate of solicited adverse events in the clinical trial was 
comparable to—or even lower than—that reported for other COVID-19 
vaccines based on the same platform [22,36,37]. In contrast, mRNA- 
based booster vaccines have shown higher frequencies of solicited 
adverse reactions, particularly systemic events such as headache, fa-
tigue, and myalgia, with reported rates exceeding 50 %, 60 %, and 26 %, 
respectively [29,38–40]. Although COVID-19 vaccine hesitancy is a 
complex and multifactorial issue, one of its key determinants is fear and 
the perceived risk of adverse events [41,42]. The availability of an 
alternative vaccine platform with a well-established safety record pro-
vides an additional option for public health strategies in our region and 
could contribute to improving vaccination coverage.

A difference between ARVAC and other available vaccines in the 
region is its storage conditions and stability. ARVAC has a 24-month 
shelf life at 2–8 ◦C, while widely used mRNA vaccines require lower 
temperatures for long-term storage [43–45].

One limitation of this study is the short follow-up for immunoge-
nicity (3 months). However, in the Phase I study, nAb titer increases 
remained significant even six [15] and 12 months after vaccine 
administration (unpublished results). Extended follow-up studies in 
phase 4 will provide valuable insights into the long-term durability of 
immune responses and the vaccine’s safety profile. Despite this limita-
tion, this study showed that an adapted RBD-based protein subunit 
vaccine used as a booster in previous vaccinated individuals, elicited 
robust, protective, long-lasting and broad antibody responses across 
diverse human demographic and immunological backgrounds.
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Fig. 2. Neutralizing antibody (nAb) titers to SARS-CoV-2 variants before (d1) and 14 days (d14) after vaccine/placebo administration. The plots represent antibody 
titers to SARS-CoV-2 ancestral (A, D, G, J), Gamma (B, E, H, K), and omicron variants (C, F, I, L) obtained from plasma samples of participants in Phase II (A-C) and 
Phase III (D–F). Participants in Phase III were classified according to age into 18–60 years (G-I) and > 60 years (J-L). The thick horizontal lines in the violin plots 
represent the medians. Geometric mean titer (GMT) values are indicated above the plots. Geometric mean fold rises (GMFRs) and p-values comparing titers before 
and after administration are indicated. p-values were calculated using the non-parametric paired.
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Sabrina A. Del Priore, Andrés C. Hernando Insua, Ingrid G. Kaufman, 
Adrián Di María, Adrián Gongora, Agustin Moreno, Susana Cervellini, 
Martin Blasco, Fernando Toneguzzo.

5. Conclusions

Booster vaccination with the Gamma, Omicron BA.4/5, and Bivalent 
versions of the recombinant protein subunit ARVAC vaccine elicited 
protective neutralizing antibody responses to several SARS-CoV-2 vari-
ants and SARS-CoV-1. Additionally, all vaccine versions increased anti- 
spike-specific IgG antibodies in plasma and IgA in saliva. The increase in 
plasma neutralizing antibodies induced by the vaccine was independent 
of the number of previous booster doses, the primary vaccine platform 
and the history of previous COVID-19. The neutralizing Ab response 
induced by the vaccine in healthy participants was similar to that trig-
gered in participants with underlying medical conditions associated 
with an increased risk of severe COVID-19. ARVAC showed very low 
reactogenicity and a favorable safety profile, as expected for a recom-
binant protein alhydrogel-adjuvanted vaccine. The ARVAC vaccine is a 
valuable booster option since it induced a strong and broad nAb 
response in high-priority populations previously vaccinated with a va-
riety of approved primary vaccination schemes, its feasibility and low 
cost of large-scale recombinant vaccine production, its potential for 
adaptation, its safety profile, and its viable widespread distribution.
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Table 3 
Local and systemic adverse reactions according to severity and treatment (vaccine vs. placebo), n = 2012.

Vaccine (n = 1960) Placebo (n = 1957) p-value**

Grade 1 Grade 2 Grade 3 Grade 4 Total* Grade 1 Grade 2 Grade 3 Total*

Local, n (%)#

Pain 810 (96.3) 31 (3.7) 0 0 841 (42.9) 601 (98.0) 11 (1.8) 1 (0.2) 613 (31.3) <0.001
Sensitivity/discomfort 565 (88.6) 69 (10.8) 4 (0.6) 0 638 (32.5) 385 (92.1) 30 (7.2) 2 (0.5) 417 (21.3) <0.001
Swelling/induration 155 (98.1) 3 (1.9) 0 0 158 (8.1) 73 (100) 0 0 73 (3.8) <0.001
Erythema/redness 74 (96.1) 3 (3.9) 0 0 77 (3.9) 44 (97.8) 1 (2.2) 0 45 (2.3) 0.003
Itching 54 (100) 0 0 0 54 (2.8) 28 (96.6) 1 (3.4) 0 29 (1.5) 0.006

Systemic, n (%)#

Diarrhea 43 (91.5) 3 (6.4) 1 (2.1) 0 47 (2.4) 38 (97.4) 1 (2.6) 0 39 (2.0) 0.388
Headache 203 (83.9) 37 (15.3) 2 (0.8) 0 242 (12.3) 170 (90.4) 17 (9.0) 1 (0.5) 188 (9.6) 0.006
Joint pain 48 (85.7) 7 (12.5) 1 (1.8) 0 56 (2.9) 39 (84.8) 7 (15.2) 0 46 (2.4) 0.321
Muscle pain/myalgia 103 (86.6) 15 (12.6) 1 (0.8) 0 119 (6.1) 93 (86.9) 14 (13.1) 0 107 (5.5) 0.420
Chills 34 (81.0) 7 (16.7) 1 (2.4) 0 42 (2.1) 26 (89.7) 3 (10.3) 0 29 (1.5) 0.122
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Adverse reactions to all vaccine and placebo administrations are included.
# The percentage next to each grade was calculated over the total number of cases for each adverse reaction.
* Percentage of each adverse reaction calculated over the total number of administrations.
** Chi-square test.
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